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Iterative schemes for the solution of a nonlinear integral equation arising in particle trans- 
port theory are illustrated, and their convergence is studied in the frame of the Lebesgue space 
L,. Numerical results are then reported for some specializations of practical interest of the 
physical parameters entering the considered transport equation. 0 1985 Academic press, IIIC. 

1. INTRODUCTION 

In a recent paper [ 11, dealing with stationary transport of test particles (t.p.) 
interacting between themselves and with an infinite homogeneous background of 
field particles (fp), the following nonlinear integral equation was derived, in the 
absence of scattering collisions, for the isotropic tp distribution function f(u) as a 
function of the speed u: 

@,(u)f(u) +f(u) jom K(u, u’)f(u’) du’ = QoS(u). (1) 
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In Eq. (1) fi is the fixed fp density and Q, denotes the intensity of the external 
source, and 

wAu) du, s O” S(u) du = 1, 
0 

(2) 

where gR and g, stand for the tp - fp and tp - tp removal microscopic collision fre- 
quencies, respectively. The L,-norm of the nonnegative function f provides the 
unknown tp density 

n= omf(uW= Ilfll. s (3) 

Because of their physical meaning, the parameters ri and Q, are positive, and the 
functions gR, g,, and S are nonnegative for v E (0, co). It is assumed, here and in 
the sequel, that S(v)/g,(u) EL,(O, co), in agreement with Ref. Cl]. 

A natural field of application of Eq. (1) concerns certain annihilation problems 
occurring in radiation and positron physics [2, 31. From a mathematical point of 
view it can be rewritten as an equation of Hammerstein type [4] 

$(u) = jom WV, 0’) #Co’, $(u’)l du’, f$(v, u) = Qostv) 
&R(V) + u’ 

wheref(v) = #[v, $(v)], but with a function 4 which is not continuous with respect 
to U. A more important feature of Eq. (1) is its resemblance to the somewhat sim- 
pler H-equation of Chandrasekhar 

which has been widely studied in neutron transport and astrophysics [S, 61, and for 
which accurate numerical results have been recently given [7]. The main differences 
between the two equations are the lack of analyticity properties in the kernel K for 
the class of nonlinear integral equations described by Eqs. (1) and (2), and the 
opposite sign in front of the quadratic term, that implies a different trend in the sign 
of solutions, as is shown in the next section. In another study [9], iterative schemes 
for a related equation arising in the study of inhomogeneous atmospheres are put 
on a rigorous footing. We consider here an iterative scheme not available for the 
equation studied- in [9], however, because of the complicated form of that 
equation. 

It is known that Cl], by a straightforward application of the contraction map- 
ping principle, and under certain regularity assumptions and restrictions on the 
various parameters, Eq. (1) admits a solution in the space L, , which is unique in a 
suitable ball of L,, and can be proved to be nonnegative. In this paper we shall 
construct this solution numerically by iteration, with the aim of providing accurate 
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numerical results for some cases of physical interest. After considering briefly some 
simple specializations in which all solutions can be found explicitly, and discussing 
the iterative schemes suggested by Eq. (1) itself (equivalent to those recently 
proposed [8] and exploited [7] for the solution of the H-equation), we come to 
the description of the computational method and of the obtained numerical results. 

2. ANALYTICALLY SOLVABLE CASFB 

In this section we shall examine two cases for which an explicit analytical 
solution to Eq. (1) can be easily obtained. The first one refers to a monochromatic 
source 

S(v) = 8(v - vg), v,>o (6) 

where 6 is the Dirac delta function. It is easily found that all solutions have the 
form f(v) = nd(v - vO), as is clear on physical grounds, where the density n follows 
from the second order algebraic equation 

K(vo, vo) n2 + ~tf,dv,,) n - Qo = 0, (7) 

which always has two real roots, one positive (smaller in modulus) and one 
negative. There are thus two solutions, but only the positive one has a physical 
meaning. It may be recalled that the situation is different in the case of the H- 
equation for which two real solutions exist, both positive, only one of which has the 
proper behavior when analytically continued to the complex plane [6]. 

Another simple situation for which an analytical solution can be devised is that 
in which the microscopic collision frequencies are constant: gR(v) = C and 
gR(v) = C. The contraction mapping principle would guarantee [l] existence and 
uniqueness of the solution to Eq. (1) with norm less than &/2C, provided the con- 
dition 

is fulfilled. Anyway Eq. (1) implies directly 

f(v) =.&& S(v), (9) 

showing that the spectrum remains unchanged with respect to the source shape 
function S(v) (removal effects are equally effective at all speeds), and yielding by 
integration the continuity equation for n 

Cn2+h&-Qo=O. (10) 
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This equation also admits one positive and one negative root, namely 

n*- -At'+[A2t2+4CQ,,]1'2 - 
2c 9 (11) 

to be used in f(o) = nS(o) to get the two L, solutions to Eq. (1) for this case. The 
unique nonnegative solutionf + (the only physical one) has smaller norm, actually 
less than riC/2C, but the solutionsf+ andf- exist regardless of condition (8). 

3. ITERATIVE SCHEMES 

The same conditions that guarantee existence and uniqueness of a solution in a 
suitable ball of L, via contraction mapping are also sufficient conditions for the 
convergence of the iterative procedure 

t-QJ(u) -f/c(u) s6p K(u, u’)fdu’) du’l, 
(12) 

h(u) = Qd(uW~,(~X 

in the sense that the sequence of approximate solutionsf, converges in the L,-norm 
to the unique solution in such a ball. Of course, this is not necessarily the most 
effective solution technique. Another iterative procedure suggested by Eq. (1) is 

f/c+,(u)= QoS(v) 
hgR(u) + J; ~(0, u’)fk(u’) du” fo(u)= QJ(uY~~,(~)> (13) 

which has the great advantage of preserving positivity at any step, starting from a 
nonnegative initial guess. The two schemes corresponding to Eqs. (12) and (13) 
have been considered also for the solution of Chandrasekhar’s H-equation, in which 
case Eq. (12) is not subject to any condition for convergence and Eq. (13) always 
converges faster [8]. For the present problem it is reasonable to expect similarly 
that Eq. (13) should again be preferred, and that it could allow us to relax the 
unphysical restriction on Q, associated with Eq. (12). 

To obtain more insight, let us examine briefly the two iteration schemes applied 
to the simple case g=(u) = C, gR(u) = C, whose solution has been explicitly deter- 
mined in the previous section. Setting 

pSn, 
QCI 

x = CQo/A2~12, 

one ends up with the algebraic iterative schemes 

PO=1 
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and 

Pk + 1 = l/C 1 + v,), po=L (15b) 

respectively. The exact physical solution is 

pJ1+4x)“2-1 
2x . (16) 

Since only positive values of x are considered, the numerical sequence obtained 
from (15a) is found to converge (again by contraction mapping) when x < $. In 
general the pk are polynomials in x of increasing order; the convergence is alter- 
nating, with two monotone subsequences converging to the limit from above and 
below. There is numerical evidence of convergence even for x > d, but it becomes 
slower and slower with increasing x, until a breakdown occurs at about x = 4, when 
the monotone subsequences no longer converge to the same limit. If x is increased 
to unity, we get a sequence oscillating between 0 and 1. For x increasing beyond 1, 
there appears to be more and more subsequences converging to different, even 
negative limits, until the pk just appear as random numbers; eventually the 
sequence divergences for x > 2. In turn, the iteration procedure (15b) yields instead 
the pk as rational functions of x, which can be expressed in the continued fraction 
notation [lo] as 

(17) 

k times 

The positive numbers Bk are uniquely determined by 

B,=Bk-,+xBke2, B-,=O,B,=l. (18) 

The behaviour of this second sequence pk has been tested numerically for several x 
in the interval (0, co). A slight decrease of convergence rate as x increases has been 
noted, as expected, but no breakdown occurs. The convergence turns out to be 
always much faster than for the first (polynomial) sequence. 

We can actually prove that the sequence pk of Eq. (15b) converges for k -P co, to 
the appropriate solution (16) for any x > 0. For B,, in fact, the following recursion 
formula 

Bk=~Bk-,+[(~+$)B~~I+(-l)k~k+1]“2 (194 

holds for k = 0, and can be proved by induction for k z== 0. Using in fact Eq. (18) 
yields first 

B;-Bk+lBk-l=(-l)k-l~k+l. (19b) 
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We then evaluate Bk+ , from Eq. (18), eliminate Bk- I by using Eq. (19b), and solve 
the resulting quadratic equation for B, + 1, selecting the only positive root, to find 
just the recursion relation (19a) for the index k + 1. This implies in particular that 
Eq. (19b) is valid for any value of k, and a consequence of (19b) is 

B k+2 4 B:, , -BI~+z& Xk+2 

---= 

B &+I &+lBk+s 
=(-ukB B (19c) 

k+3 k+l k+3’ 

where the sign of the r.h.s. depends thus only on the value of k. Therefore the sub- 
sequence P2k = B2klB2k + 1 is monotonically increasing, while the subsequence 
P -&k+,/Bx+2 Zk+l- is monotonically decreasing and both must have a non- 
negative limit, L, and L,,, respectively. Equation (18) implies also 

& h-2 -=l++- 
Bk-1 Bk-1’ 

(204 

and, in the limit for k + OD, with k even, and, respectively, odd, we get 

L,‘= 1 +xL,, Le-‘= 1 +xL,, W’b) 

and finally, from the difference, L,, = L,. The subsequences have a common limit L 
satisfying 

xL2+L-l=O, (2~) 

so that, since L > 0, the limit L is just equal to p, as given by Eq. (16). It may be 
noted that the limit always lies between the two successive approximations Pk and 
Pk+l. 

4. CONVERGENCE IN THE GENERAL CASE 

The analysis of the previous section gives good evidence that Eq. (13) should be 
preferred to Eq. (12) to get accurate numerical solutions of Eq. (1). Another point 
to be taken into account is that, in the case of Eq. (13), if some approximation fk 
has been found which is too small on the average, the iterate arising from it will be 
on the average too large, and vice versa [7]. 

Even though we do not know in general the number of solutions to Eq. (1 ), or if 
they exist at all, and in particular we do not know the number of physical ones, 
nevertheless the convergence of the iterative scheme of Eq. (13) can be guaranteed 
under suitable assumptions. More precisely, let us suppose that there is a non- 
negative solution f (0) to Eq. (1). Consider then 

k?l?(u) f(o) 
Y(u)= 1 -QoS(v)f(4= 1 -fm' (21) 
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for which we have, in view of Eq. (l), 0 d y(u) f 1 for any u. Suppose further that 

yo= sup y(u) < 1. 
UE(O,~l 

(22) 

Then the sequencef,(u), defined by Eq. (13), converges pointwise tof(o). 
To prove this, we first remark that Eq. (22) implies 

(1 +IJ)f(u) <fo(u) < (1 +q)f(uh (23) 

where p and q are real numbers with - 1 <p < 0 <q < oz. Inserting Eq. (23) into 
the right hand side of Eq. (13) yields now, on account of Eq. (l), 

[ 
qY(u) 

l- 1 + w(u) ]m ffi(U) G [ 1 - 1 ~;;;u)]j(u), 

and in particular 

(244 

Wb) 

The same procedure is then repeated for the higher order approximations f2, f3 ,..., 
to verify that the upper and lower limits for the generalf,(u) both converge to f(u) 
when k -+ cc. This is actually the case, due to Eq. (22); the details are omitted here 
since the proof is, from now on, a straightforward extension of the one given in 
Ref. [8] for the H-equation. 

Of the existence of one physical nonnegative solution we have numerical evidence 
in all considered cases. 

5. NUMERICAL METHODS AND RESULTS 

We have constructed numerical solutions of Eq. (1) using the iterative schemes of 
both Eqs. (12) and (13) for several different cases of interest. We used a Maxwellian 
source 

qu) = 4x - r/2p3/2u2e - Bu*, (254 

with 

j3 = m/2k, T. 6-1 

The integral in the equation was approximated by Gauss quadrature, and we thus 
solved forf(u) at the speed points specilied by the chosen quadrature scheme. With 
this approximation Eq. (13) may be written 

fk+ I(u,) = QoS(u,) QduJ + $ K(u,v uJhc(~J w, - ‘7 1 I = 1, 2,..., N (26) 
m=l 
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where the u, are the nodes in the N-point quadrature scheme, and w, the 
corresponding weights. 

Note that during each iteration, for each successive 1 we know fk+ i(u,) for 
1% m < I- 1, thus we can use these most recent values for f on the right hand side 
of Eq. (26); i.e., we rewrite Eq. (26) in the form 

h+1(uA= QoSh)[ARn(UI)+~~~ ~(~,~%l)fk+l(hJ wm 

N 

I-’ 
(27) 

+ c au,, bn)fk(%J wrn 7 I= 1, 2 ,..., N. 
In=/ 

This progressive “updating” of the solution within each iteration has a very positive 
effect on the convergence rate, and in some cases produces convergence when it is 
not obtainable otherwise. 

Solutions were obtained for a wide variety of removal microscopic collision fre- 
quencies of the general form 

gR(U) = &, gfdu) = Co”, I, s = - 3, - 2 )...) 1, 2. (28) 

With the iterative scheme of Eq. (13), convergence was always achieved, typically in 
15 iterations or less, when we required agreement to 12 significant figures between 
successive iterates at each speed point. As expected on the basis of the discussion in 
Section 4, the convergence is not monotone, but oscillating, and there are two sub- 
sequences of functions, one converging from above and one from below to the exact 
solution, with no overlapping between successive approximations. The same trend 
was found for the numerical sequence (15b). 

The iterative scheme of Eq. (12) was not nearly so well behaved. Without 
updating, convergence was achieved only for small values of Q0 slightly beyond the 
limit given in Ref. [ 1 ] by contraction mapping. Updating can produce convergence 
also for some larger value of Q,, and accelerates convergence, but typically 80 or 
100 iterations are required, instead of the 10 or 12 which are typical for Eq. (27). 
The scheme of Eq. (13) instead always converges, for any Q,, and in relatively few 
iterations (25 or less for Q, as large as lo3 times the contraction mapping limit). 

In Tables I through V we give results of our calculations for different values of 
the exponents I and s in Eq. (28), for which we used various combinations of - 1, 
0, and 1. The values 0 and 1 correspond to the case of constant collision frequency 
and constant cross section, respectively. The parameters A, c, C, Q,, and /I have 
been taken to be unity in all cases. Each table shows the converged values of the 
distribution function f and of its ratio to the shape S of the external source versus 
the speed u, at some selected points 

i 
O’=m-j j= 1, 2 ,..., 19. 
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TABLE I 

gR(u) = 1 and gR(u) = 1: n = 0.618034 

j f flS 

1 0.385290( -02) 
2 0.170079(-01) 
3 0.421034( -01) 
4 0.818906( -01) 
5 0.138676 
6 0.213194 
1 0.302613 
8 0.397462 
9 0.478047 

10 0.513101 
11 0.467775 
12 0.330763 
13 0.152868 
14 0.328064( -01) 
15 0.154914( -02) 
16 0.251134( -05) 
17 0.507545( - 12) 
18 0.750118(-33) 
19 0.0 

0.618034 
0.618034 
0.618034 
0.618034 
0.618034 
0.618034 
0.618034 
0.618034 
0.618034 
0.618034 
0.618034 
0.618034 
0.618034 
0.618034 
0.618034 
0.618034 
0.618034 
0.618034 

- 

TABLE II 

gR(u) = v and gR(u) = v: n = 0.591837 

i f f/S 

1 0.996453( -02) 0.159839( +Ol) 
2 0.402240( - 01) 0.146166( +Ol) 
3 0.908653( -01) 0.133381(+01) 
4 0.160804 0.121360( +Ol) 
5 0.246782 0.109983( +ol) 
6 0.341954 0.991300 
7 0.434258 0.886897 
8 0.505301 0.785719 
9 0.531620 0.687294 

10 0.491360 0.591846 
11 0.378812 0.500494 
12 0.222160 0.415108 
13 0.835148( -01) 0.337645 
14 0.142889( -01) 0.269187 
15 0.524875( -03) 0.209401 
16 0.638168( -06) 0.157051 
17 0.910407( - 13) 0.110860 
18 0.847180(-34) 0.698006( -01) 
19 0.0 
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TABLE III 

g,(o) = u - ’ and gR(u) = v - ‘: n = 0.708964 

i 

1 0.317222( -03) 
2 0.285116( -02) 
3 0.107828( -01) 
4 0.284974( -01) 
5 0.615367( -01) 
6 0.116002 
7 0.196838 
8 0.304150 
9 0.426778 

10 0.533878 
11 0.571145 
12 0.481023 
13 0.270632 
14 0.725404( -01) 
15 0.440024( -02) 
16 0.951087( -05) 
17 0.272306( - 11) 
18 0.639185(-32) 
19 0.0 

f f/S 

0.508849( - 01) 
0.103606 
0.158280 
0.215072 
0.274250 
0.336281 
0.402007 
0.472940 
0.551751 
0.643060 
0.754608 
0.898795 
0.109415( +Ol) 
0.136658( +Ol) 
0.175549( +Ol) 
0.234060( +Ol) 
0.331585( +Ol) 
0.526635( +Ol) 

TABLE IV 

iR(u) = 1 and gR(u) = v: n = 0.566873 

j 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
1.5 
16 
17 
18 
19 

f flS 

0.385392( -02) 0.618198 
0.170122( -01) 0.618191 
0.421117(-01) 0.618155 
0.818899(-01) 0.618029 
0.138595 0.617674 
0.212771 0.616808 
0.301071 0.614886 
0.392884 0.610916 
0.466597 0.603230 
0.489268 0.589327 
0.428520 0.566169 
0.284393 0.531390 
0.119992 0.485121 
0.228433( -01) 0.430341 
0.928132( -03) 0.370282 
0.124359( -05) 0.306045 
0.194960( - 12) 0.237401 
0.198909(-33) 0.163885 
0.0 - 
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TABLE V 

gR(u) = u and gR(u) = 1: n = 0.618307 

j f fP 

1 0.929163( -02) 0.149045( +ol) 
2 0.377278( -01) 0.137096( +01) 
3 0.857155(-01) 0.125821( +Ol) 
4 0.152598 0.115167( +01) 
5 0.235784 0.105082( +Ol) 
6 0.329509 0.955221 
7 0.423280 0.864477 
8 0.500482 0.778226 
9 0.538464 0.696142 

10 0.513014 0.617930 
11 0.411227 0.543322 
12 0.252648 0.472075 
13 0.999191( -01) 0.403967 
14 0.179839( -01) 0.338795 
15 0.692742( -03) 0.276372 
16 0.879854( -06) 0.216530 
17 0.130665( - 12) 0.159110 
18 0.126188( -33) 0.103968 
19 0.0 

Note that the right hand side of Eq. (1) vanishes at u = 0, so that both nonnegative 
terms in the 1.h.s. must also vanish at u = 0. Since K(u, u’) tends to g,JU’) for u + 0, 
we have in particularf(0) = 0, and f/S is at least 0( 1) for u --) 0. The total density n 
is given in the table caption. When r = s = 0, the ratio f/S is of course constant, and 
the total density n coincides with the result of Eq. (16), namely (5l’* - 1)/2. 

For each case, successively higher order quadrature sets were used until the com- 
puted results failed to change by more than + 1 digit in the last significant figure 
shown in the tables. Thus we have confidence in the tabulated results to the number 
of significant figures given. In all tables convergence was achieved within 13 
iterations and with no more than 400 quadrature points. 
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